4,755 research outputs found

    Testing Broken U(1) Symmetry in a Two-Component Atomic Bose-Einstein Condensate

    Full text link
    We present a scheme for determining if the quantum state of a small trapped Bose-Einstein condensate is a state with well defined number of atoms, a Fock state, or a state with a broken U(1) gauge symmetry, a coherent state. The proposal is based on the observation of Ramsey fringes. The population difference observed in a Ramsey fringe experiment will exhibit collapse and revivals due to the mean-field interactions. The collapse and revival times depend on the relative strength of the mean-field interactions for the two components and the initial quantum state of the condensate.Comment: 20 Pages RevTex, 3 Figure

    Three-dimensional unstructured grid generation via incremental insertion and local optimization

    Get PDF
    Algorithms for the generation of 3D unstructured surface and volume grids are discussed. These algorithms are based on incremental insertion and local optimization. The present algorithms are very general and permit local grid optimization based on various measures of grid quality. This is very important; unlike the 2D Delaunay triangulation, the 3D Delaunay triangulation appears not to have a lexicographic characterization of angularity. (The Delaunay triangulation is known to minimize that maximum containment sphere, but unfortunately this is not true lexicographically). Consequently, Delaunay triangulations in three-space can result in poorly shaped tetrahedral elements. Using the present algorithms, 3D meshes can be constructed which optimize a certain angle measure, albeit locally. We also discuss the combinatorial aspects of the algorithm as well as implementational details

    Asymptotic Capture-Number and Island-Size Distributions for One-Dimensional Irreversible Submonolayer Growth

    Full text link
    Using a set of evolution equations [J.G. Amar {\it et al}, Phys. Rev. Lett. {\bf 86}, 3092 (2001)] for the average gap-size between islands, we calculate analytically the asymptotic scaled capture-number distribution (CND) for one-dimensional irreversible submonolayer growth of point islands. The predicted asymptotic CND is in reasonably good agreement with kinetic Monte-Carlo (KMC) results and leads to a \textit{non-divergent asymptotic} scaled island-size distribution (ISD). We then show that a slight modification of our analytical form leads to an analytic expression for the asymptotic CND and a resulting asymptotic ISD which are in excellent agreement with KMC simulations. We also show that in the asymptotic limit the self-averaging property of the capture zones holds exactly while the asymptotic scaled gap distribution is equal to the scaled CND.Comment: 4 pages, 1 figure, submitted to Phys. Rev.

    A site-specific standard for comparing dynamic solar ultraviolet protection characteristics of established tree canopies

    Get PDF
    A standardised procedure for making fair and comparable assessments of the ultraviolet protection of an established tree canopy that takes into account canopy movement and the changing position of the sun is presented for use by government, planning, and environmental health authorities. The technique utilises video image capture and replaces the need for measurement by ultraviolet radiometers for surveying shade quality characteristics of trees growing in public parks, playgrounds and urban settings. The technique improves upon tree shade assessments that may be based upon single measurements of the ultraviolet irradiance observed from a fixed point of view. The presented technique demonstrates how intelligent shade audits can be conducted without the need for specialist equipment, enabling the calculation of the Shade Protection Index (SPI) and Ultraviolet Protection Factor (UPF) for any discreet time interval and over a full calendar year

    Extending the scope of microscopic solvability: Combination of the Kruskal-Segur method with Zauderer decomposition

    Full text link
    Successful applications of the Kruskal-Segur approach to interfacial pattern formation have remained limited due to the necessity of an integral formulation of the problem. This excludes nonlinear bulk equations, rendering convection intractable. Combining the method with Zauderer's asymptotic decomposition scheme, we are able to strongly extend its scope of applicability and solve selection problems based on free boundary formulations in terms of partial differential equations alone. To demonstrate the technique, we give the first analytic solution of the problem of velocity selection for dendritic growth in a forced potential flow.Comment: Submitted to Europhys. Letters, No figures, 5 page

    A continuous non-linear shadowing model of columnar growth

    Full text link
    We propose the first continuous model with long range screening (shadowing) that described columnar growth in one space dimension, as observed in plasma sputter deposition. It is based on a new continuous partial derivative equation with non-linear diffusion and where the shadowing effects apply on all the different processes.Comment: Fast Track Communicatio
    • …
    corecore